逆向工程学
基本解释
逆向工程学(Reverse Engineering, RE) 是指从实物上采集大量的三维坐标点,并由此建立该物体的几何模型,进而开发出同类产品的先进技术。逆向工程与一般的设计制造过程相反,是先有实物后有模型。仿形加工就是一种典型的逆向工程应用。该项项技术与快速成型技术相结合,可以实现产品的快速三维拷贝,并经过CAD重新建模修改或快速成型工艺参数的调整,还可以实现零件或模型的变异复原。
逆向工程学 - 简介
逆向工程学(Reverse Engineering,RE)是对产品设计过程的一种描述,是一门新兴的计算机辅助设计技术,也称为反求工程,是一系列分析方法和应用技术的结合。
广义上的逆向工程基本上包括形状(几何)反求、工艺反求和材料反求等诸多方面,是一个集合多种先进技术的复杂的系统工程。1980年后,很多关于逆向工程的研究都集中在形态的反求方面,即根据现有的物理原型,利用3D数字化测量设备,准确快速地获得实物原型的三维空间数据(点云),经过优化点云、曲面构建、修改编辑,建立精确的可用于生产的CAD模型,然后按照传统的生产制造流程生产出原型或产品,也可以利用快速成型技术,快速制作出精确的产品样件或原型。
在工程技术人员的一般概念中,产品设计过程是一个从无到有的过程,即设计人员首先在大脑中构思产品的外形、性能和大致的技术参数等,然后通过绘制图纸建立产品的三维数字化模型,最终将这个模型转入到制造流程中,完成产品的整个设计制造周期。这样的产品设计过程我们称为“正向设计”过程。逆向工程产品设计可以认为是一个“从有到无”的过程。简单地说,逆向工程产品设计就是根据已经存在的产品模型,反向推出产品设计数据(包括设计图纸或数字模型)的过程。逆向工程技术不是传统意义上的“仿制”,而是综合应用现代工业设计的理论方法、生产工程学、材料工程学和有关专业知识,进行系统得地分析研究,进而快速开发制造出高附加值、高技术水平的新产品。
逆向工程学应用历史久远,早期的船舶工业中常用的船体放样设计就是逆向工程的很好实例。随着计算机技术在制造领域的广泛应用,特别是数字化测量技术的发展,基于测量数据的产品造型技术成为逆向工程技术关注的主要对象。通过数字化测量设备(如坐标测量机、激光测量设备等)获取的物体表面的空间数据,需要利用逆向工程技术建立产品的三维模型,进而利用CAM系统完成产品的制造。因此,逆向工程技术可以认为是将产品样件转化为三维模型的相关数字化技术和几何建模技术的总称。逆向工程的实施过程是多领域、多学科的协同过程。逆向工程的整个实施过程包括了从测量数据采集、处理到常规CAD/CAM系统,最终与产品数据管理系统(PDM系统)融合的过程。工程的实施需要人员和技术的高度协同、融合。
逆向工程学 - 研究进展
1980年开始,欧美国家许多学校及工业界开始注意逆向工程领域。
1990年初期,各国学术界团队大量投入逆向工程的研究并发表成果。
逆向软件的演进约略可区分为三个阶段:2000年前,在逆向工程上,只能运用CATIA等CAD/CAM高阶曲面系统。市场后来发展出两套主流产品约在2003年前技术成熟,广为业界引用。到2007年后,发展出不同以往的逆向工程数学逻辑运算,速度快。
1998年,NEWPOWER启动了逆向工程的一些项目,要求是把客户的现有源代码转变成设计, 如果需要的话,进一步转化成产品需求规约。这恰恰与类似于V模型的标准开发过程模型相逆。这样一来,客户就可以容易地维护他们的产品(需求,设计,源代码等等),而不需要想以前那样,每次改动产品都需要直接修改源代码。
截止2011年,逆向工程的应用已从单纯的技巧性手工操作,发展到采用先进的计算机及测量设备,进行设计、分析、制造等活动,如获取修模后的模具形状、分析实物模型、基于现有产品的创新设计、快速仿形制造等。
逆向工程学 - 作用特点
逆向工程被广泛地应用到新产品开发和产品改型设计、产品仿制、质量分析检测等领域,它的特点是:
1、缩短产品的设计、开发周期,加快产品的更新换代速度;
2、降低企业开发新产品的成本与风险;
3、加快产品的造型和系列化的设计;
4、适合单件、小批量的零件制造,特别是模具的制造,可分为直接制模与间接制模法。直接制模法:基于RP技术的快速直接制模法是将模具CAD的结果由RP系统直接制造成型。该法既不需用RP系统制作样件,也不依赖传统的模具制造工艺,对金属模具制造而言尤为快捷,是一种极具开发前景的制模方法;间接制模法:间接制模法是利用RP技术制造产品零件原型,以原型作为母模、模芯或制模工具(研磨模),再与传统的制模工艺相结合,制造出所需模具。
逆向工程学 - 理论依据
逆向工程在CAD/CAM系统中的作用
逆向工程技术不是一个孤立的技术,它和测量技术及现有CAD/CAM系统有着千丝万缕的联系。但是在实际应用过程中,由于大多数工程技术人员对逆向工程技术不够了解,将逆向工程技术与现有CAD/CAM技术等同起来,用现有CAD/CAM系统的技术水平要求逆向工程技术,往往造成人们对逆向工程技术的不信任和误解。
从理论角度分析,逆向工程技术能够按照产品的测量数据重建出与现有CAD/CAM系统完全兼容的三维模型,这是逆向工程技术的最终实现目标。但是,人们所掌握的技术,包括工程上的和纯理论上的(如曲面建模理论),都还无法满足这种要求。特别是针对大规模“点云”数据建模,更是远未达到可以直接在CAD系统中应用的程度。因此,逆向工程CAD技术与现有CAD/CAM系统的关系只能是一种相辅相成的关系。现有CAD/CAM系统经过几十年的发展,无论从理论还是实际应用上都已经十分成熟,在这种状况下,现有CAD/CAM系统不会也不可能为了满足逆向工程建模的特殊要求变更系统底层。另一方面,逆向工程技术中用到的大量建模方法完全可以借鉴现有CAD/CAM系统,不需要另外搭建新平台。基于这种分析,我们认为逆向工程技术在整个制造体系链中处于从属、辅助建模的地位,逆向工程技术可以利用现有CAD/CAM系统,帮助其实现自身无法完成的工作。逆向工程技术(包括相应的软件)始终不是市场上的主流,而大多数CAD/CAM系统又均包含逆向工程模块或第三方软件包。
逆向工程学 - 主要部件
硬件
逆向工程的硬件最早是运用仿制加工设备,制作出来的成品品质粗糙。后来有接触式扫瞄设备,运用探针接触工件取得产品外型。再来进一步开发非接触式设备,运用照相或激光技术,计算光线反射回来的时间取得距离。
软件
逆向工程的实施需要逆向工程软件的支撑。逆向工程软件的主要作用是接收来自测量设备的产品数据,通过一系列的编辑操作,得到品质优良的曲线或曲面模型,并通过标准数据格式将这些曲线曲面数据输送到现有CAD/CAM系统中,在这些系统中完成最终的产品造型。
由于无法完全满足用户对产品造型的需求,因此逆向工程CAD软件很难与现有主流CAD/CAM系统,如CATIA、UG、Pro/ENGINEER和SolidWorks等抗衡。很多逆向工程软件成为这些CAD/CAM系统的第三方软件。如UG采用ImageWare作为UG系列产品中完成逆向工程造型的软件,Pro/ENGINEER采用ICEM Surf作为逆向工程模块的支撑软件。此外还有一些独立的逆向工程软件,如GeoMagic等,这些软件一般具有多元化的功能。例如,GeoMagic除了处理几何曲面造型以外,还可以处理以CT、MRI数据为代表的断层界面数据造型,从而使软件在医疗成像领域具有相当的竞争力。另外一些逆向工程软件作为整体系列软件产品中的一部分,无论数据模型还是几何引擎均与系列产品中的其他组件保持一致,这样做的好处是逆向工程软件产生的模型可以直接进入CAD或CAM模块中,实现了数据的无缝集成,这类软件的代表是DELCAM公司的CopyCAD。
1、GeoMagic
美国RainDrop公司的逆向工程软件,具有丰富的数据处理手段,可以根据测量数据快速构造出多张连续的曲面模型。软件的应用领域包括了从工业设计到医疗仿真等诸多方面,用户包括通用汽车、BMW等大制造商。
2、ImageWare
作为UG NX中提供的逆向工程造型软件,ImageWare具有强大的测量数据处理、曲面造型、误差检测功能。可以处理几万至几百万的点云数据。根据这些点云数据构造的A级曲面(CLASS A)具有良好的品质和曲面连续性。ImageWare的模型检测功能可以方便、直观地显示所构造的曲面模型与实际测量数据之间的误差以及平面度、真圆度等几何公差。
3、CopyCAD
是英国DELCAM公司系列CAD产品中的一个,主要处理测量数据的曲面造型。DELCAM的产品涵盖了从设计到制造、检测的全过程。包括PowerSHAPE、PowerMILL、PowerINSPECT、ArtCAM、CopyCAD、PS-TEAM等诸多软件产品。作为系列产品的一部分,CopyCAD与系列中的其他软件可以很好地集成。
4、RapidForm
是由韩国INUS公司开发的逆向工程软件。主要用于处理测量、扫描数据的曲面建模以及基于CT数据的医疗图像建模,还可以完成艺术品的测量建模以及高级图形生成。RapidForm提供一整套模型分割、曲面生成、曲面检测的工具,用户可以方便的利用以前构造的曲线网格经过缩放处理后应用到新的模型重构过程中。
5、中国逆向工程软件
在中国能够见到的商品化的逆向工程软件均是国外的。中国在逆向工程软件方面虽然也有研究,但是主要集中在几所高校。其中以清华大学、浙江大学、南京航空航天大学在这方面的研究比较深入,这些研究成果也有一些以软件产品形式出现,由于系统稳定性、可操作性等方面的原因,这些研究性软件还没有完全具备与国外商业化软件竞争的条件。由中国逆向工程领域专业人士参与开发的逆向工程软件QuickForm 是国内逆向工程软件中较好的一个。该系统采用先进的几何引擎,运行稳定性好,具有良好的可操作性。由于开发人员具有丰富的逆向工程实施经验,因此系统中的功能设置、操作方式符合国内用户的习惯,这是国外软件所无法具备的。QuickForm的另一个优势是价格优势,QuickForm的价格在同类软件中具有极强的竞争力。同时,使用国产软件也是对国内制造业和软件行业的支持。
逆向工程学 - 实现方法
在逆向工程中,准确、快速和全面获取实物原型的三维数据是关键的一步。数据的好坏直接影响到逆向工程后期的成败。数据的采集是指采用某种测量方法和设备测出实物表面的若干组点的几何坐标,实现的方法有多种。按照与被测实体对象表面是否接触,可以分为2类:
接触式测量
传统的方式是以三坐标测量机为代表的接触式,精度相对精确,已经广泛应用到机械制造、电子、汽车和航空航天等领域。优点是通用性强,除不适用软物体之外,对所测物体的材质和表面色泽无特殊要求;精度高,可与数控机床或加工中心配套使用,建立柔性制造系统。缺点是易于损伤测头和划伤对测零件的表面,同时价格昂贵,速度较慢,对环境要求高。
非接触式测量
非接触式主要是利用某种与物体表面发生相互作用的物理现象来获取实体的三维信息。利用光学原理发展起来的现代三维形状测量方法应用最为广泛,如激光线结构光扫描、投影光栅法、数字照相系统等方法。以及新出现的切层法、计算机断层扫描(CT)法,这2种方法可以对孔及内部空腔的实体进行测量。非接触式测量由于受到测量介质和控制的影响,测量精度没有接触式高,但具有测量速度快以及不用和实物接触等优点,在一些领域越来越受到重视。
逆向工程学 - 应用范围
逆向工程的应用领域主要是飞机、汽车、玩具和家电等模具相关行业。随着生物、材料技术的发展,逆向工程技术也开始应用在人工生物骨骼等医学领域。但是其最主要的应用领域还是在模具行业。由于模具制造过程中经常需要反复试冲和修改模具型面。若测量最终符合要求的模具并反求出其数字化模型,在重复制造该模具时就可运用这一备用数字模型生成加工程序,可以大大提高模具生产效率,降低模具制造成本。
1、模具样品开发:汽机车类、家电制品、运动器材 、玩具、陶瓷等。
2、快速原型制作:古董、人像、艺术品、卡通人物、玩具等。
3、人体形状测量:人体外形测量、医疗器材制作等。
4、造型设计:立体动画、多媒体虚拟实景、广告动画等。